345 research outputs found

    It\u2019s a Matter of Mind! Cognitive Functioning Predicts the Athletic Performance in Ultra- Marathon Runners

    Get PDF
    The present study was aimed at exploring the influence of cognitive processes on performance in ultra-marathon runners, providing an overview of the cognitive aspects that characterize outstanding runners. Thirty runners were administered a battery of computerized tests right before their participation in an ultra-marathon. Then, they were split according to the race rank into two groups (i.e., faster runners and slower runners) and their cognitive performance was compared. Faster runners outperformed slower runners in trials requiring motor inhibition and were more effective at performing two tasks together, successfully suppressing the activation of the information for one of the tasks when was not relevant. Furthermore, slower runners took longer to remember to execute pre-defined actions associated with emotional stimuli when such stimuli were presented. These findings suggest that cognitive factors play a key role in running an ultra-marathon. Indeed, if compared with slower runners, faster runners seem to have a better inhibitory control, showing superior ability not only to inhibit motor response but also to suppress processing of irrelevant information. Their cognitive performance also appears to be less influenced by emotional stimuli. This research opens new directions towards understanding which kinds of cognitive and emotional factors can discriminate talented runners from less outstanding runners

    A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

    Get PDF
    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy

    Geometrical modeling of complete dental shapes by using panoramic X-ray, digital mouth data and anatomical templates

    Get PDF
    In the field of orthodontic planning, the creation of a complete digital dental model to simulate and predict treatments is of utmost importance. Nowadays, orthodontists use panoramic radiographs (PAN) and dental crown representations obtained by optical scanning. However, these data do not contain any 3D information regarding tooth root geometries. A reliable orthodontic treatment should instead take into account entire geometrical models of dental shapes in order to better predict tooth movements. This paper presents a methodology to create complete 3D patient dental anatomies by combining digital mouth models and panoramic radiographs. The modeling process is based on using crown surfaces, reconstructed by optical scanning, and root geometries, obtained by adapting anatomical CAD templates over patient specific information extracted from radiographic data. The radiographic process is virtually replicated on crown digital geometries through the Discrete Radon Transform (DRT). The resulting virtual PAN image is used to integrate the actual radiographic data and the digital mouth model. This procedure provides the root references on the 3D digital crown models, which guide a shape adjustment of the dental CAD templates. The entire geometrical models are finally created by merging dental crowns, captured by optical scanning, and root geometries, obtained from the CAD templates

    Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors

    Get PDF
    In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients’ mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning

    Optical measurements and experimental investigations in repeated low-energy impacts in powerboat sandwich composites

    Get PDF
    In the world of powerboats competition, the high-performance sandwich-structured composites have completely replaced traditional materials. During the competition, the structure of this kind of ships is subjected to repeated impacts. It is then fundamental to understand the damage evolution in order to select the most appropriate materials and increase safety issues. The present study is aimed at analysing the behaviour of sandwich-structured composites undergoing repeated low-energy impacts. Three different materials have been analysed. Two are sandwich-structured composites used for the cockpit of offshore powerboats and differing only by the core cell thickness. The third material is composed only by the skin of the same sandwich structures, without the core. Impacts were made at three different energy levels: 15, 17.5 and 20 J. In addition to the parameters typically used for the assessment of the impact damage, a new damage assessment has been carried out by means of three-dimensional optical measurements of the imprinted volumes resulting from the impact events. This approach has allowed the definition of a correlation between the imprinted volumes and the number of impacts, until the complete perforation, for each single specimen. Finally, thanks to usual indexes and the imprinted volumes, some considerations are developed about the influence of the core cell thickness in powerboats design

    digital image correlation based on projected pattern for high frequency vibration measurements

    Get PDF
    Abstract The dynamic characterization of mechanical components is a crucial issue in industry, especially in the field of rotating machinery. High frequency loads are typical in this field and experimental tools need to fulfill severe specifications to be able to analyze these high-speed phenomena. In this work, an experimental setup, based on a Digital Image Correlation (DIC) technique with a projected speckle pattern, is presented. The proposed approach allows the measurement of vibrational response characterized by a single sinusoidal component having a frequency up to 500 Hz and an amplitude lower than 10 ÎĽm

    Optical Tactile Probe for the Inspection of Mechanical Components

    Get PDF
    Abstract Mechanical components are often subjected to tolerances and geometrical specification. This paper describes an automatic 3D measurement system based on the integration of a stereo structured light scanner and a tactile probe. The tactile probe is optically tracked by the optical scanner by means of 3D measurements of a prismatic flag, rigidly connected to the probe and equipped with multiple chessboard patterns. Both the stereo vision system and the tactile probe can be easily configured enabling complete reconstructions of components having complex shapes. For instance, structured light scanning can be used to acquire external and visible geometries while tactile probing can be limited to the acquisition of internal and hidden surfaces

    Computational design and engineering of polymeric orthodontic aligners

    Get PDF
    Transparent and removable aligners represent an effective solution to correct various orthodontic malocclusions through minimally invasive procedures. An aligner-based treatment requires patients to sequentially wear dentition-mating shells obtained by thermoforming polymeric disks on reference dental models. An aligner is shaped introducing a geometrical mismatch with respect to the actual tooth positions to induce a loading system, which moves the target teeth toward the correct positions. The common practice is based on selecting the aligner features (material, thickness, and auxiliary elements) by only considering clinician's subjective assessments. In this article, a computational design and engineering methodology has been developed to reconstruct anatomical tissues, to model parametric aligner shapes, to simulate orthodontic movements, and to enhance the aligner design. The proposed approach integrates computer-aided technologies, from tomographic imaging to optical scanning, from parametric modeling to finite element analyses, within a 3-dimensional digital framework. The anatomical modeling provides anatomies, including teeth (roots and crowns), jaw bones, and periodontal ligaments, which are the references for the down streaming parametric aligner shaping. The biomechanical interactions between anatomical models and aligner geometries are virtually reproduced using a finite element analysis software. The methodology allows numerical simulations of patient-specific conditions and the comparative analyses of different aligner configurations. In this article, the digital framework has been used to study the influence of various auxiliary elements on the loading system delivered to a maxillary and a mandibular central incisor during an orthodontic tipping movement. Numerical simulations have shown a high dependency of the orthodontic tooth movement on the auxiliary element configuration, which should then be accurately selected to maximize the aligner's effectiveness

    3D vibration measurements by a virtual-stereo-camera system based on a single low frame rate camera

    Get PDF
    Abstract A 3D full-field optical system for high frequency vibration measurement is proposed. The system is composed of a single low-frame-rate camera and two planar mirrors. This compact optical setup overcomes the typical drawback of capturing synchronous acquisitions in the case of a camera pair. Moreover, planar mirrors allow for the use of the classical pinhole model and, thus, conventional stereo-calibration techniques. The use of a low-frame-rate camera provides on the one hand a high-resolution sensor with a relatively low-cost hardware but imposes, on the other, the adoption of a down-sampling approach, which is applicable only when a single (known) sinusoidal load is applied to the structure. The effectiveness of the proposed setup has been verified by the 3D vibration measurement of two different targets up to a frequency of 1 kHz, corresponding to a displacement amplitude of 0.01 mm

    Flexible calibration of a stereo vision system by active display

    Get PDF
    Abstract Camera calibration plays a fundamental role for 3D computer vision since it is the first step to recover reliable metric information from 2D images. The calibration of a stereo-vision system is a two-step process: firstly, the calibration of the individual cameras must be carried out, then the two individual calibrations are combined to retrieve the relative placement between the two cameras, and to refine intrinsic and extrinsic parameters. The most commonly adopted calibration methodology uses multiple images of a physical checkerboard pattern. However, the process is time-consuming since the operator must move the calibration target into different positions, typically from 15 to 20. Moreover, the calibration of different optical setups requires the use of calibration boards, which differ for size and number of target points depending on the desired working volume. This paper proposes an innovative approach to the calibration, which is based on the use of a conventional computer screen to actively display the calibration checkerboard. The potential non-planarity of the screen is compensated by an iterative approach, which also estimate the actual screen shape during the calibration process. The use of an active display greatly enhances the flexibility of the stereo-camera calibration process since the same device can be used to calibrate different optical setups by simply varying number and size of the displayed squared patterns
    • …
    corecore